Ultrasound - Vascular

What is Vascular Ultrasound?

View larger with caption
Carotid artery branching into external and internal divisions.

Ultrasound is safe and painless, and produces pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or sonography, involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through the gel into the body. The transducer collects the sounds that bounce back and a computer then uses those sound waves to create an image. Ultrasound examinations do not use ionizing radiation (as used in x-rays), thus there is no radiation exposure to the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of the body's internal organs, as well as blood flowing through blood vessels.

Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions.

Vascular ultrasound provides pictures of the body's veins and arteries.

A Doppler ultrasound study is usually part of a vascular ultrasound examination.

Doppler ultrasound is a special ultrasound technique that evaluates blood flow through a blood vessel, including the body's major arteries and veins in the abdomen, arms, legs, neck and head (in infants and children).

What are some common uses of the procedure?

View larger with caption
Image of carotid artery--patient lying down, head to left.

Sonography is a useful way of evaluating the body's circulatory system. Vascular ultrasound is performed to:

  • help monitor the blood flow to organs and tissues throughout the body.
  • locate and identify blockages (stenosis) and abnormalities like plaque or emboli and help plan for their effective treatment.
  • detect blood clots (deep venous thrombosis (DVT) in the major veins of the legs or arms.
  • determine whether a patient is a good candidate for a procedure such as angioplasty.
  • evaluate the success of procedures that graft or bypass blood vessels.
  • determine if there is an enlarged artery (aneurysm).
  • determine the source and severity of varicose veins.

In children, ultrasound is used to:

  • aid in the placement of a needle or catheter into a vein or artery to help avoid complications such as bleeding, nerve injury or pseudo-aneurysm (abnormal outpouching of an artery with the risk of rupture).
  • evaluate a connection between an artery and a vein which can be seen in congenital vascular malformations (arteriovenous malformations or fistula) and in dialysis fistula.

If a line is placed in an artery or vein of the legs or arms, there is a much higher chance of developing a clot around it due to the smaller vessel size (especially in infants and young children). In some instances, a clot can form in the arm or in the left leg with the latter extending into the major vein of the abdomen. Plaque formation is not frequently seen in children but there can be compression at the inlet of the chest.

Doppler ultrasound images can help the physician to see and evaluate:

  • blockages to blood flow (such as clots).
  • narrowing of vessels.
  • tumors and congenital vascular malformations.

How should I prepare?

You should wear comfortable, loose-fitting clothing for your ultrasound exam. You may need to remove all clothing and jewelry in the area to be examined.

You may be asked to wear a gown during the procedure.

If your abdominal vessels are being examined, unless the examination is performed on an urgent basis, it is best to fast before the procedure.

Ultrasound examinations are very sensitive to motion, and an active or crying child can prolong the examination process. To ensure a smooth experience, it often helps to explain the procedure to the child prior to the exam. Bringing books, small toys, music or games can help to distract the child and make the time pass quickly. The ultrasound exam room may have a television. Feel free to ask for your child's favorite channel.

What does the equipment look like?

View larger with caption
Ultrasound equipment

Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a transducer that is used to do the scanning. The transducer is a small hand-held device that resembles a microphone, attached to the scanner by a cord. The transducer sends out inaudible high frequency sound waves into the body and then listens for the returning echoes from the tissues in the body. The principles are similar to sonar used by boats and submarines.

The ultrasound image is immediately visible on a video display screen that looks like a computer or television monitor. The image is created based on the amplitude (loudness), frequency (pitch) and time it takes for the ultrasound signal to return from the area of the patient being examined to the transducer (the device used to examine the patient), as well as the type of body structure and composition of body tissue through which the sound travels. A small amount of gel is put on the skin to allow the sound waves to travel back and forth from the transducer.

How does the procedure work?

View larger with caption
Right Common Carotid Artery--Color Doppler Ultrasound.

Ultrasound imaging is based on the same principles involved in the sonar used by bats, ships and fishermen. When a sound wave strikes an object, it bounces back, or echoes. By measuring these echo waves, it is possible to determine how far away the object is as well as the object's size, shape and consistency (whether the object is solid or filled with fluid).

In medicine, ultrasound is used to detect changes in appearance, size or contour of organs, tissues, and vessels or detect abnormal masses, such as tumors.

In an ultrasound examination, a transducer both sends the sound waves and receives the echoing waves. When the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves into the body. As the sound waves bounce off internal organs, fluids and tissues, the sensitive microphone in the transducer records tiny changes in the sound's pitch and direction. These signature waves are instantly measured and displayed by a computer, which in turn creates a real-time picture on the monitor. One or more frames of the moving pictures are typically captured as still images. Small loops of the moving “real time” images may also be saved.

View larger with caption
Right common carotid artery. Doppler wave form added at bottom.

Doppler ultrasound, a special application of ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of blood cells causes a change in pitch of the reflected sound waves (called the Doppler effect). A computer collects and processes the sounds and creates graphs or color pictures that represent the flow of blood through the blood vessels.

How is the procedure performed?

For most ultrasound exams, you will be positioned lying face-up on an examination table that can be tilted or moved.

View larger with caption
Ultrasound, abdominal aorta with Doppler wave form.

A clear water-based gel is applied to the area of the body being studied to help the transducer make secure contact with the body and eliminate air pockets between the transducer and the skin that can block the sound waves from passing into your body. The sonographer (ultrasound technologist) or radiologist then places the transducer on the skin in various locations, sweeping over the area of interest or angling the sound beam from a different location to better see an area of concern.

Doppler sonography is performed using the same transducer.

View larger with caption
Ultrasound of abdominal aorta. Color flow and spectral doppler.

When the examination is complete, you may be asked to dress and wait while the ultrasound images are reviewed.

This ultrasound examination is usually completed within 30 to 45 minutes. Occasionally, complex examinations may take longer.

What will I experience during and after the procedure?

Ultrasound examinations are painless and easily tolerated by most patients.

After you are positioned on the examination table, the radiologist or sonographer will apply some warm water-based gel on your skin and then place the transducer firmly against your body, moving it back and forth over the area of interest until the desired images are captured. There is usually no discomfort from pressure as the transducer is pressed against the area being examined.

If scanning is performed over an area of tenderness, you may feel pressure or minor pain from the transducer.

If a Doppler ultrasound study is performed, you may actually hear pulse-like sounds that change in pitch as the blood flow is monitored and measured.

Once the imaging is complete, the clear ultrasound gel will be wiped off your skin. Any portions that are not wiped off will dry to a powder. The ultrasound gel does not stain or discolor clothing.

After an ultrasound examination, you should be able to resume your normal activities immediately.

Who interprets the results and how do I get them?

A radiologist, a physician specifically trained to supervise and interpret radiology examinations, will analyze the images and send a signed report to your primary care physician, or to the physician or other healthcare provider who requested the exam, and he/she will share the results with you. In some cases the radiologist may discuss results with you at the conclusion of your examination.

Follow-up examinations may be necessary, and your doctor will explain the exact reason why another exam is requested. Sometimes a follow-up exam is done because a suspicious or questionable finding needs clarification with additional views or a special imaging technique. A follow-up examination may also be necessary so that any change in a known abnormality can be monitored over time. Follow-up examinations are sometimes the best way to see if treatment is working or if an abnormality is stable over time.

What are the benefits vs. risks?

Benefits

  • Most ultrasound scanning is noninvasive (no needles or injections).
  • Occasionally, an ultrasound exam may be temporarily uncomfortable, but it is almost never painful.
  • Ultrasound is widely available, easy-to-use and less expensive than other imaging methods.
  • Ultrasound imaging is extremely safe and does not use any ionizing radiation.
  • Ultrasound scanning gives a clear picture of soft tissues that do not show up well on x-ray images.

Risks

What are the limitations of Vascular Ultrasound?

  • Vessels deep in the body are harder to see than superficial vessels. Specialized equipment or other tests such as CT or MRI may be necessary to properly visualize them.
  • Smaller vessels are more difficult to image and evaluate than larger vessels.
  • Calcifications that occur as a result of atherosclerosis may obstruct the ultrasound beam.
  • Sometimes ultrasound cannot differentiate between a blood vessel that is completely occluded (closed off) versus one that is significantly (but not completely) narrowed. Even if there is a very small remaining opening, the weak blood flow produces a sometimes undetectable signal.
  • The test is specialized and is best performed by a technologist and physician with experience and interest in vascular ultrasound imaging.

Additional Information and Resources

American Stroke Association: http://www.strokeassociation.org

National Stroke Association: http://www.stroke.org

Did you find the information you were looking for?

      

If you wish to submit a comment, click here.

Locate an ACR-accredited provider: To locate a medical imaging or radiation oncology provider in your community, you can search the ACR-accredited facilities database.

This website does not provide costs for exams. The costs for specific medical imaging tests and treatments vary widely across geographic regions. Many—but not all—imaging procedures are covered by insurance. Discuss the fees associated with your medical imaging procedure with your doctor and/or the medical facility staff to get a better understanding of the portions covered by insurance and the possible charges that you will incur.

Web page review process: This Web page is reviewed regularly by a physician with expertise in the medical area presented and is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of North America (RSNA), comprising physicians with expertise in several radiologic areas.

Outside links: For the convenience of our users, RadiologyInfo.org provides links to relevant websites. RadiologyInfo.org, ACR and RSNA are not responsible for the content contained on the web pages found at these links.

Images: Images are shown for illustrative purposes. Do not attempt to draw conclusions or make diagnoses by comparing these images to other medical images, particularly your own. Only qualified physicians should interpret images; the radiologist is the physician expert trained in medical imaging.

Share this article: Share on Facebook Share on twitter Share on Google+ E-mail
View as PDF: PDF

This page was reviewed on August 27, 2013

Current Radiology News

Pediatric-specific content (hide detail)

Look for the teddy bear…

*Some imaging tests and treatments have special pediatric considerations.

The teddy bear denotes child-specific content.

Related Links: