

How Artificial Intelligence is Transforming Medical Imaging

Artificial intelligence (AI) is becoming a vital tool in modern medicine. Nowhere is this more apparent than in the world of medical imaging. Since the currency of AI is data, and radiology is the most data-rich subspecialty in medicine, it is the field most visibly transformed by AI advances. AI in medicine is not something to fear. Instead, it is a tool that works alongside doctors to improve accuracy, quality, efficiency, and patient comfort.

Why Imaging Matters

Medical imaging is often the first step in detecting disease. From spotting a small tumor, to identifying early signs of Alzheimer's disease (<https://www.radiologyinfo.org/en/info/alzheimers>) , to evaluating broken bones, imaging gives doctors a detailed window into the human body. But interpreting these scans can be complex and time-consuming.

AI in medical imaging uses advanced computer algorithms to help radiologists analyze scans with greater speed, accuracy, and precision. Think of it as an assistant that can:

- **Detect subtle changes** in the brain, lungs, or heart that might be too small for the human eye to catch.
- **Measure and track changes over time**, such as tumor growth or brain shrinkage, giving doctors a clearer picture of how a disease is progressing.
- **Reduce variability** by standardizing *how radiologists report findings* (<https://www.radiologyinfo.org/en/info/all-about-your-radiology-report>) , which helps ensure patients receive consistent and accurate results.

Real-World Examples

- **Faster scans with improved image quality:** AI tools now allow doctors to scan their patients up to 75% faster, while also improving image quality. This is especially important since nearly one in three patients feels severe anxiety or claustrophobia in MRI scanners. Faster exams mean less stress and more comfort for patients. Better image quality helps radiologists make more accurate diagnoses, including allowing detection of the smallest traces of early cancer.
- **Critical Findings:** AI can detect urgent findings on imaging exams. The AI tool can then prioritize cases with critical findings, sending them to the top of the radiologist's worklist, so that patients can receive treatment earlier. For example, *strokes* (<https://www.radiologyinfo.org/en/info/stroke>) are a leading cause of adult disability and death worldwide. AI can quickly detect a stroke on a *CT scan* (<https://www.radiologyinfo.org/en/info/headct>) , and then automatically alert the doctors, so treatment can begin faster—a critical factor when every minute counts. Earlier detection means earlier treatment which translates to less time spent in hospital and significant improvement in treatment outcomes.
- **Alzheimer's disease:** AI tools can quantify brain changes such as shrinkage or abnormal protein buildup, supporting earlier and more confident diagnoses. AI solutions can also help detect and grade treatment side effects, improving interpretation accuracy and impacting patient management.
- **Multiple sclerosis:** In multiple sclerosis, scar-like spots called plaques build up in the brain over time. AI helps doctors

track these plaques with remarkable precision—measuring their size and quickly identifying new or enlarging plaques. This detailed information gives neurologists a clearer picture of how the disease is progressing, so they can adjust and fine-tune medication to best support each patient's needs.

- **Cancer detection:** AI is a powerful tool which helps radiologists find cancer earlier. Computers excel at pattern recognition, while doctors bring reasoning and clinical judgment—together, the combination is stronger. AI can also precisely measure tumor size, assist in biopsy planning, and track response to treatment across cancers like breast, lung, prostate, and brain.

Empowering Radiologists Not Replacing Them

A common misconception is that AI will replace doctors. In reality, AI is designed to support radiologists, not replace them. Radiologists bring medical knowledge, clinical judgment, and human connection that machines cannot. AI simply adds another layer of insight, making the work more efficient and accurate, which means better outcomes for patients.

For patients, AI in imaging can mean:

- Earlier detection of disease when treatments are most effective.
- More personalized care guided by precise measurements.
- Shorter wait times and faster results.

Looking Ahead

The future of AI in medical imaging is incredibly promising. AI experts are developing new tools every day, tools that may one day predict who is at risk for certain diseases, or guide highly targeted treatments. With the use of these advanced AI tools, radiologists and other medical professionals will be able to detect disease earlier, improve patient management, and save lives.

Disclaimer

This information is copied from the RadiologyInfo Web site (<http://www.radiologyinfo.org>) which is dedicated to providing the highest quality information. To ensure that, each section is reviewed by a physician with expertise in the area presented. All information contained in the Web site is further reviewed by an ACR (American College of Radiology) - RSNA (Radiological Society of North America) committee, comprising physicians with expertise in several radiologic areas.

However, it is not possible to assure that this Web site contains complete, up-to-date information on any particular subject. Therefore, ACR and RSNA make no representations or warranties about the suitability of this information for use for any particular purpose. All information is provided "as is" without express or implied warranty.

Please visit the RadiologyInfo Web site at <http://www.radiologyinfo.org> to view or download the latest information.

Note: Images may be shown for illustrative purposes. Do not attempt to draw conclusions or make diagnoses by comparing these images to other medical images, particularly your own. Only qualified physicians should interpret images; the radiologist is the physician expert trained in medical imaging.

Copyright

This material is copyrighted by either the Radiological Society of North America (RSNA), 820 Jorie Boulevard, Oak Brook, IL 60523-2251 or the American College of Radiology (ACR), 1891 Preston White Drive, Reston, VA 20191-4397. Commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is prohibited.

Copyright © 2026 Radiological Society of North America, Inc.