Pelvic Floor MRI

Dynamic pelvic floor magnetic resonance imaging (MRI) is a noninvasive test that uses a powerful magnetic field, radio waves and a computer to produce detailed pictures of the pelvic floor, a network of muscles that stretches between the pubic bone and spine and the abdominal organs it supports. It is used to obtain information about the pelvic floor's structure and the function of the muscles within it and to identify any abnormalities or damage.

Tell your doctor about any health problems, recent surgeries or allergies and whether there's a possibility you are pregnant. The magnetic field is not harmful, but it may cause some medical devices to malfunction. Most orthopedic implants pose no risk, but you should always tell the technologist if you have any devices or metal in your body. Guidelines about eating and drinking before your exam vary between facilities. Unless you are told otherwise, take your regular medications as usual. Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown. If you have claustrophobia or anxiety, you may want to ask your doctor for a mild sedative prior to the exam.

What is a pelvic floor MRI?

Magnetic resonance imaging (MRI) is a noninvasive test doctors use to diagnose medical conditions.

MRI uses a powerful magnetic field, radiofrequency pulses, and a computer to produce detailed pictures of internal body structures. MRI does not use radiation (x-rays).

Detailed MR images allow doctors to examine the body and detect disease.

Dynamic pelvic floor MRI provides detailed pictures of the pelvic floor, a network of muscles that stretches between the pubic bone and spine, and the abdominal organs it supports, including three distinct areas or compartments:

- the anterior (front) compartment, including the bladder and urethra
- the middle compartment, including the vagina, cervix and uterus
- the posterior (rear) compartment which includes the rectum.

During dynamic pelvic floor MRI, images are obtained while the patient is contracting or squeezing the pelvic muscles and while the pelvic muscles are relaxed.

What are some common uses of the procedure?

Physicians use dynamic pelvic floor MRI to:

- obtain information about the structure of the pelvic floor and how well the pelvic muscles are working
- determine which compartments of the pelvis are damaged and to help identify specific pelvic muscle defects
• provide information for surgical and treatment planning
• diagnose pelvic floor dysfunction (also called pelvic floor disorders), including:
 • one or more of the pelvic organs falling out of position (a condition called prolapse).
 • the stretching or tearing of the pelvic floor which may cause urinary incontinence, fecal
 incontinence (https://www.radiologyinfo.org/en/info/fecal-incontinence), pelvic pain and/or constipation.

How should I prepare?

You will need to change into a hospital gown. This is to prevent artifacts appearing on the final images and to comply with safety
regulations related to the strong magnetic field.

Guidelines about eating and drinking before an MRI vary between specific exams and facilities. Take food and medications as
usual unless your doctor tells you otherwise.

Some MRI exams use an injection of contrast material. The doctor may ask if you have asthma or allergies to contrast material,
drugs, food, or the environment. MRI exams commonly use a contrast material called gadolinium. Doctors can use gadolinium in
patients who are allergic to iodine contrast. A patient is much less likely to be allergic to gadolinium than to iodine contrast.
However, even if the patient has a known allergy to gadolinium, it may be possible to use it after appropriate pre-medication. For
more information on allergic reactions to gadolinium contrast, please consult the ACR Manual on Contrast

Tell the technologist or radiologist if you have any serious health problems or recent surgeries. Some conditions, such as severe
kidney disease, may mean that you cannot safely receive gadolinium. You may need a blood test to confirm your kidneys are
functioning normally.

Women should always tell their doctor and technologist if they are pregnant. MRI has been used since the 1980s with no reports
of any ill effects on pregnant women or their unborn babies. However, the baby will be in a strong magnetic field. Therefore,
pregnant women should not have an MRI in the first trimester unless the benefit of the exam clearly outweighs any potential risks.
Pregnant women should not receive gadolinium contrast unless absolutely necessary. See the MRI Safety During
Pregnancy (https://www.radiologyinfo.org/en/info/safety-mri-pregnancy) page for more information about pregnancy and MRI.

If you have claustrophobia (fear of enclosed spaces) or anxiety, ask your doctor to prescribe a mild sedative prior to the date of
your exam.

Leave all jewelry and other accessories at home or remove them prior to the MRI scan. Metal and electronic items are not allowed
in the exam room. They can interfere with the magnetic field of the MRI unit, cause burns, or become harmful projectiles. These
items include:

• jewelry, watches, credit cards, and hearing aids, all of which can be damaged
• pins, hairpins, metal zippers, and similar metallic items, which can distort MRI images
• removable dental work
• pens, pocketknives, and eyeglasses
• body piercings
• mobile phones, electronic watches, and tracking devices.

In most cases, an MRI exam is safe for patients with metal implants, except for a few types. People with the following implants
may not be scanned and should not enter the MRI scanning area without first being evaluated for safety:

• some cochlear (ear) implants
- some types of clips used for brain aneurysms
- some types of metal coils placed within blood vessels
- some older cardiac defibrillators and pacemakers
- vagal nerve stimulators

Tell the technologist if you have medical or electronic devices in your body. These devices may interfere with the exam or pose a risk. Many implanted devices will have a pamphlet explaining the MRI risks for that device. If you have the pamphlet, bring it to the attention of the scheduler before the exam. MRI cannot be performed without confirmation and documentation of the type of implant and MRI compatibility. You should also bring any pamphlet to your exam in case the radiologist or technologist has any questions.

If there is any question, an x-ray can detect and identify any metal objects. Metal objects used in orthopedic surgery generally pose no risk during MRI. However, a recently placed artificial joint may require the use of a different imaging exam.

Tell the technologist or radiologist about any shrapnel, bullets, or other metal that may be in your body. Foreign bodies near and especially lodged in the eyes are very important because they may move or heat up during the scan and cause blindness. Dyes used in tattoos may contain iron and could heat up during an MRI scan. This is rare. The magnetic field will usually not affect tooth fillings, braces, eyeshadows, and other cosmetics. However, these items may distort images of the facial area or brain. Tell the radiologist about them.

What does the equipment look like?

The traditional MRI unit is a large cylinder-shaped tube surrounded by a circular magnet. You will lie on a table that slides into a tunnel towards the center of the magnet.

Some MRI units, called short-bore systems, are designed so that the magnet does not completely surround you. Some newer MRI machines have a larger diameter bore, which can be more comfortable for larger patients or those with claustrophobia. "Open" MRI units are open on the sides. They are especially helpful for examining larger patients or those with claustrophobia. Open MRI units can provide high quality images for many types of exams. Open MRI may not be used for certain exams. For more information, consult your radiologist.

How does the procedure work?

Unlike x-ray and computed tomography (CT) exams, MRI does not use radiation. Instead, radio waves re-align hydrogen atoms that naturally exist within the body. This does not cause any chemical changes in the tissues. As the hydrogen atoms return to their usual alignment, they emit different amounts of energy depending on the type of tissue they are in. The scanner captures this energy and creates a picture using this information.

In most MRI units, the magnetic field is produced by passing an electric current through wire coils. Other coils are inside the machine and, in some cases, are placed around the part of the body being imaged. These coils send and receive radio waves, producing signals that are detected by the machine. The electric current does not come into contact with the patient.

A computer processes the signals and creates a series of images, each of which shows a thin slice of the body. The radiologist can study these images from different angles.

MRI is often able to tell the difference between diseased tissue and normal tissue better than x-ray, CT, and ultrasound.

How is the procedure performed?

MRI exams may be done on an outpatient basis.
You may be asked to empty your bladder.

You will be positioned on a moveable examination table lying on your back. Straps and bolsters may be used to help you remain still and maintain the correct position during imaging. A device that contains coils capable of sending and receiving radio waves will be strapped around your pelvis.

You will be placed into the MRI unit and the radiologist and technologist will perform the examination while working at a computer outside of the room.

Images will be obtained while you are contracting or squeezing the pelvic muscles and while the pelvic muscles are relaxed. You may also be asked to bear down or forcibly exhale while keeping your mouth and nose closed. The technologist will give you instructions during the exam.

The entire exam is usually completed within 15 minutes and is performed without using an intravenous contrast agent.

What will I experience during and after procedure?

Most MRI exams are painless. However, some patients find it uncomfortable to remain still. Others may feel closed-in (claustrophobic) while in the MRI scanner. The scanner can be noisy.

It is normal for the area of your body being imaged to feel slightly warm, but if it bothers you, notify the radiologist or technologist. It is important that you remain perfectly still while the images are being obtained, which is typically only a few seconds to a few minutes at a time. You will know when images are being recorded because you will hear and feel loud tapping or thumping sounds when the MRI coils that help acquire the images are activated. Some centers provide earplugs, while others use headphones to reduce the intensity of the sounds made by the MRI machine. You will be able to relax between imaging sequences, but will be asked to maintain your position without movement as much as possible.

You will usually be alone in the exam room during the MRI procedure. However, the technologist will be able to see, hear and speak with you at all times using a two-way intercom. Many MRI centers allow a friend or parent to stay in the room as long as they are also screened for safety in the magnetic environment.

Who interprets the results and how do I get them?

A radiologist, a doctor trained to supervise and interpret radiology exams, will analyze the images. The radiologist will send a signed report to your primary care or referring physician, who will share the results with you.

What are the benefits vs. risks?

Benefits

- MRI is a noninvasive imaging technique that does not involve exposure to radiation.
- MR images of the soft-tissue structures of the body—such as the heart, liver and many other organs—are clearer and more detailed than with other imaging methods. This detail makes MRI an invaluable tool in early diagnosis and evaluation of cancer.
- MRI has proven valuable in diagnosing a broad range of conditions, including heart and vascular disease, stroke, and joint and musculoskeletal disorders.
- MRI can help physicians evaluate both the structure of an organ and how it is working.
- MRI can detect abnormalities that might be obscured by bone with other imaging methods.
- Dynamic pelvic floor MRI allows physicians to assess the pelvic floor and pelvic organs at the same time, both while the muscles are relaxed and contracting, which is especially helpful when evaluating disorders that involve more than one area or compartment.
Risks

- The MRI examination poses almost no risk to the average patient when appropriate safety guidelines are followed.
- Although the strong magnetic field is not harmful in itself, implanted medical devices that contain metal may malfunction or cause problems during an MRI exam.

What are the limitations of a pelvic floor MRI?

High-quality images depend on your ability to remain perfectly still and follow breath-holding instructions while the images are being recorded. If you are anxious, confused or in severe pain, you may find it difficult to lie still during imaging.

A person who is very large may not fit into certain types of MRI machines. There are weight limits on the scanners.

Implants and other metallic objects can make it difficult to obtain clear images. Patient movement can have the same effect.

A very irregular heartbeat may affect the quality of images. This is because some techniques time the imaging based on the electrical activity of the heart.

All muscles can be seen on MRI, but not all ligaments. The radiologist will use the muscle findings to make assumptions about tears within the ligaments.

Present data show no convincing evidence that non contrast MRI harms the fetus of a pregnant woman. However, if the need for the exam is not time sensitive your doctor may delay the exam until after delivery. MRI gadolinium contrast agents are generally avoided during pregnancy except in very specific circumstances. Your doctor will discuss the benefits and risks of any MRI procedure with you. Doctors may perform MRI after the first trimester to assess the fetus for findings that are not fully evaluated by ultrasound.

Disclaimer

This information is copied from the RadiologyInfo Web site (http://www.radiologyinfo.org) which is dedicated to providing the highest quality information. To ensure that, each section is reviewed by a physician with expertise in the area presented. All information contained in the Web site is further reviewed by an ACR (American College of Radiology) - RSNA (Radiological Society of North America) committee, comprising physicians with expertise in several radiologic areas.

However, it is not possible to assure that this Web site contains complete, up-to-date information on any particular subject. Therefore, ACR and RSNA make no representations or warranties about the suitability of this information for use for any particular purpose. All information is provided "as is" without express or implied warranty.

Please visit the RadiologyInfo Web site at http://www.radiologyinfo.org to view or download the latest information.

Note: Images may be shown for illustrative purposes. Do not attempt to draw conclusions or make diagnoses by comparing these images to other medical images, particularly your own. Only qualified physicians should interpret images; the radiologist is the physician expert trained in medical imaging.

Copyright

This material is copyrighted by either the Radiological Society of North America (RSNA), 820 Jorie Boulevard, Oak Brook, IL 60523-2251 or the American College of Radiology (ACR), 1891 Preston White Drive, Reston, VA 20191-4397. Commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is prohibited.

Copyright © 2023 Radiological Society of North America, Inc.