Computed Tomography (CT) - Body

Computed tomography (CT) of the body uses special x-ray equipment to help detect a variety of diseases and conditions. CT scanning is fast, painless, noninvasive and accurate. In emergency cases, it can reveal internal injuries and bleeding quickly enough to help save lives.

Tell your doctor if there's a possibility you are pregnant and discuss any recent illnesses, medical conditions, medications you're taking, and allergies. You will be instructed not to eat or drink anything for a few hours beforehand. If you have a known allergy to contrast material, your doctor may prescribe medications to reduce the risk of an allergic reaction. These medications must be taken 12 hours prior to your exam. Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown.

What is CT Scanning of the Body?

Computed tomography, more commonly known as a CT or CAT scan, is a diagnostic medical test that, like traditional x-rays, produces multiple images or pictures of the inside of the body.

The cross-sectional images generated during a CT scan can be reformatted in multiple planes, and can even generate three-dimensional images. These images can be viewed on a computer monitor, printed on film or transferred to a CD or DVD.

CT images of internal organs, bones, soft tissue and blood vessels provide greater detail than traditional x-rays, particularly of soft tissues and blood vessels.

Using specialized equipment and expertise to create and interpret CT scans of the body, radiologists can more easily diagnose problems such as cancer, cardiovascular disease, infectious disease, appendicitis, trauma and musculoskeletal disorders.
What are some common uses of the procedure?

CT imaging is:

- one of the fastest and most accurate tools for examining the chest, abdomen and pelvis because it provides detailed, cross-sectional views of all types of tissue.
- used to examine patients with injuries from trauma such as a motor vehicle accident.
- performed on patients with acute symptoms such as chest or abdominal pain or difficulty breathing.
- often the best method for detecting many different cancers, such as lymphoma and cancers of the lung, liver, kidney, ovary and pancreas since the image allows a physician to confirm the presence of a tumor, measure its size, identify its precise location and determine the extent of its involvement with other nearby tissue.
- an examination that plays a significant role in the detection, diagnosis and treatment of vascular diseases that can lead to stroke, kidney failure or even death. CT is commonly used to assess for pulmonary embolism (a blood clot in the lung vessels) as well as for aortic aneurysms.
- invaluable in diagnosing and treating spinal problems and injuries to the hands, feet and other skeletal structures because it can clearly show even very small bones as well as surrounding tissues such as muscle and blood vessels.

In pediatric patients, CT imaging is often used to evaluate:

- lymphoma
- neuroblastoma
- kidney tumors
- congenital malformations of the heart, kidneys and blood vessels
- cystic fibrosis
- complications of acute appendicitis
- complications of pneumonia
- inflammatory bowel disease
- severe injuries

Radiologists and radiation oncologists often use the CT examination to:

- quickly identify injuries to the lungs, heart and vessels, liver, spleen, kidneys, bowel or other internal organs in cases of trauma.
- guide biopsies and other procedures such as abscess drainages and minimally invasive tumor treatments.
- plan for and assess the results of surgery, such as organ transplants or gastric bypass.
- stage, plan and properly administer radiation treatments for tumors as well as monitor response to chemotherapy.
- measure bone mineral density for the detection of osteoporosis.

How should I prepare?

You should wear comfortable, loose-fitting clothing to your exam. You may be given a gown to wear during the procedure.
Metal objects, including jewelry, eyeglasses, dentures and hairpins, may affect the CT images and should be left at home or removed prior to your exam. You may also be asked to remove hearing aids and removable dental work. Women will be asked to remove bras containing metal underwire. You may be asked to remove any piercings, if possible.

You will be asked not to eat or drink anything for a few hours beforehand, if contrast material will be used in your exam. You should inform your physician of all medications you are taking and if you have any allergies. If you have a known allergy to contrast material, or "dye," your doctor may prescribe medications (usually a steroid) to reduce the risk of an allergic reaction. These medications generally need to be taken 12 hours prior to administration of contrast material. To avoid unnecessary delays, contact your doctor before the exact time of your exam.

Also inform your doctor of any recent illnesses or other medical conditions and whether you have a history of heart disease, asthma, diabetes, kidney disease or thyroid problems. Any of these conditions may increase the risk of an unusual adverse effect.

Women should always inform their physician and the CT technologist if there is any possibility that they may be pregnant. See the Safety page for more information about pregnancy and x-rays.

What does the CT equipment look like?

The CT scanner is typically a large, box-like machine with a hole, or short tunnel, in the center. You will lie on a narrow examination table that slides into and out of this tunnel. Rotating around you, the x-ray tube and electronic x-ray detectors are located opposite each other in a ring, called a gantry. The computer workstation that processes the imaging information is located in a separate control room, where the technologist operates the scanner and monitors your examination in direct visual contact and usually with the ability to hear and talk to you with the use of a speaker and microphone.

How does the procedure work?

In many ways CT scanning works very much like other x-ray examinations. Different body parts absorb the x-rays in varying degrees. It is this crucial difference in absorption that allows the body parts to be distinguished from one another on an x-ray film or CT electronic image.

In a conventional x-ray exam, a small amount of radiation is aimed at and passes through the part of the body being examined, recording an image on a special electronic image recording plate. Bones appear white on the x-ray; soft tissue, such as organs like the heart or liver, shows up in shades of gray, and air appears black.

With CT scanning, numerous x-ray beams and a set of electronic x-ray detectors rotate around you, measuring the amount of radiation being absorbed throughout your body. Sometimes, the examination table will move during the scan, so that the x-ray beam follows a spiral path. A special computer program processes this large volume of data to create two-dimensional cross-sectional images of your body, which are then displayed on a monitor. CT imaging is sometimes compared to looking into a loaf of bread by
cutting the loaf into thin slices. When the image slices are reassembled by computer software, the result is a very detailed multidimensional view of the body's interior.

Refinements in detector technology allow nearly all CT scanners to obtain multiple slices in a single rotation. These scanners, called multislice CT or multidetector CT, allow thinner slices to be obtained in a shorter period of time, resulting in more detail and additional view capabilities.

Modern CT scanners are so fast that they can scan through large sections of the body in just a few seconds, and even faster in small children. Such speed is beneficial for all patients but especially children, the elderly and critically ill, all of whom may have difficulty in remaining still, even for the brief time necessary to obtain images.

For children, the CT scanner technique will be adjusted to their size and the area of interest to reduce the radiation dose.

For some CT exams, a contrast material is used to enhance visibility in the area of the body being studied.

How is the procedure performed?

The technologist begins by positioning you on the CT examination table, usually lying flat on your back. Straps and pillows may be used to help you maintain the correct position and to help you remain still during the exam.

Many scanners are fast enough that children can be scanned without sedation. In special cases, sedation may be needed for children who cannot hold still. Motion will cause blurring of the images and degrade the quality of the examination the same way that it affects photographs.

If contrast material is used, depending on the type of exam, it will be swallowed, injected through an intravenous line (IV) or, rarely, administered by enema.

Next, the table will move quickly through the scanner to determine the correct starting position for the scans. Then, the table will move slowly through the machine as the actual CT scanning is performed. Depending on the type of CT scan, the machine may make several passes.

You may be asked to hold your breath during the scanning. Any motion, whether breathing or body movements, can lead to artifacts on the images. This loss of image quality can resemble the blurring seen on a photograph taken of a moving object.

When the examination is completed, you will be asked to wait until the technologist verifies that the images are of high enough quality for accurate interpretation.

The CT examination is usually completed within 30 minutes. The portion requiring intravenous contrast injection usually lasts only 10 to 30 seconds.

What will I experience during and after the procedure?

CT exams are generally painless, fast and easy. With multidetector CT, the amount of time that the
patient needs to lie still is reduced.

Though the scanning itself causes no pain, there may be some discomfort from having to remain still for several minutes and with placement of an IV. If you have a hard time staying still, are very nervous or anxious or have chronic pain, you may find a CT exam to be stressful. The technologist or nurse, under the direction of a physician, may offer you some medication to help you tolerate the CT scanning procedure.

For exams (excluding head and neck) your head will remain outside the hole in the center of the scanner. The scanner is approximately 24 inches wide, therefore, your entire body will be “inside” the scanner at one time such as with MRI.

If an intravenous contrast material is used, you will feel a pin prick when the needle is inserted into your vein. You will likely have a warm, flushed sensation during the injection of the contrast materials and a metallic taste in your mouth that lasts for at most a minute or two. You may experience a sensation like you have to urinate; however, this is actually a contrast effect and subsides quickly.

If the contrast material is swallowed, you may find the taste mildly unpleasant; however, most patients can easily tolerate it. You can expect to experience a sense of abdominal fullness and an increasing need to expel the liquid if your contrast material is given by enema. In this case, be patient, as the mild discomfort will not last long.

When you enter the CT scanner, special light lines may be seen projected onto your body, and are used to ensure that you are properly positioned. With modern CT scanners, you will hear only slight buzzing, clicking and whirring sounds as the CT scanner’s internal parts, not usually visible to you, revolve around you during the imaging process.

You will be alone in the exam room during the CT scan, unless there are special circumstances. For example, sometimes a parent wearing a lead shield may stay in the room with their child. However, the technologist will always be able to see, hear and speak with you through a built-in intercom system.

With pediatric patients, a parent may be allowed in the room but will be required to wear a lead apron to minimize radiation exposure.

After a CT exam, the intravenous line used to inject the contrast material will be removed by the technologist, and the tiny hole made by the needle will be covered with a small dressing. You can return to your normal activities.

Who interprets the results and how do I get them?

A radiologist with expertise in supervising and interpreting radiology examinations will analyze the images and send an official report to your primary care physician or physician who referred you for the exam, who will discuss the results with you.

Follow-up examinations may be necessary. Your doctor will explain the exact reason why another exam is requested. Sometimes a follow-up exam is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. A follow-up examination may also be
necessary so that any change in a known abnormality can be monitored over time. Follow-up examinations are sometimes the best way to see if treatment is working or if a finding is stable or changed over time.

What are the benefits vs. risks?

Benefits

- CT scanning is painless, noninvasive and accurate.
- A major advantage of CT is its ability to image bone, soft tissue and blood vessels all at the same time.
- Unlike conventional x-rays, CT scanning provides very detailed images of many types of tissue as well as the lungs, bones, and blood vessels.
- CT examinations are fast and simple; in emergency cases, they can reveal internal injuries and bleeding quickly enough to help save lives.
- CT has been shown to be a cost-effective imaging tool for a wide range of clinical problems.
- CT is less sensitive to patient movement than MRI.
- CT can be performed if you have an implanted medical device of any kind, unlike MRI.
- CT imaging provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as needle biopsies and needle aspirations of many areas of the body, particularly the lungs, abdomen, pelvis and bones.
- A diagnosis determined by CT scanning may eliminate the need for exploratory surgery and surgical biopsy.
- No radiation remains in a patient’s body after a CT examination.
- X-rays used in CT scans should have no immediate side effects.

Risks

There is no conclusive evidence that radiation at small amounts delivered by a CT scan causes cancer. Large population studies have shown a slight increase in cancer from much larger amounts of radiation, such as from radiation therapy. Thus, there is always concern that this risk may also apply to the lower amounts of radiation delivered by a CT exam. When a CT scan is recommended by your doctor, the expected benefit of this test outweighs the potential risk from radiation. You are encouraged to discuss the risks versus the benefits of your CT scan with your doctor or radiologist, and to explore whether alternative imaging tests may be available to diagnose your condition.

- The effective radiation dose for this procedure varies. See the Safety page for more information about radiation dose.
- Women should always inform their physician and x-ray or CT technologist if there is any possibility that they are pregnant. See the Safety page for more information about pregnancy and x-rays.
- CT scanning is, in general, not recommended for pregnant women unless medically necessary because of potential risk to the fetus in the womb.
- Manufacturers of intravenous contrast indicate mothers should not breastfeed their babies for 24-48 hours after contrast medium is given. However, both the American College of Radiology (ACR)
and the European Society of Urogenital Radiology note that the available data suggest that it is safe
to continue breastfeeding after receiving intravenous contrast. For further information please
consult the ACR Manual on Contrast Media and its references.
- The risk of serious allergic reaction to contrast materials that contain iodine is extremely rare, and
radiology departments are well-equipped to deal with them.
- Because children are more sensitive to radiation, they should have a CT exam only if it is essential
for making a diagnosis and should not have repeated CT exams unless absolutely necessary. CT
scans in children should always be done with low-dose technique.

What are the limitations of CT Scanning of the Body?

Soft-tissue details in areas such as the brain, internal pelvic organs, and joints (such as knees and
shoulders) can often be better evaluated with magnetic resonance imaging (MRI). In pregnant women,
while CT can be performed safely, other imaging exams not involving radiation, such as ultrasound or
MRI, are preferred but only if they are likely to be as good as CT in diagnosing your condition.

A person who is very large may not fit into the opening of a conventional CT scanner or may be over the
weight limit, usually 450 pounds, for the moving table.

Disclaimer

This information is copied from the RadiologyInfo Web site (http://www.radiologyinfo.org) which is dedicated to
providing the highest quality information. To ensure that, each section is reviewed by a physician with expertise in
the area presented. All information contained in the Web site is further reviewed by an ACR (American College of
Radiology) - RSNA (Radiological Society of North America) committee, comprising physicians with expertise in
several radiologic areas.

However, it is not possible to assure that this Web site contains complete, up-to-date information on any particular
subject. Therefore, ACR and RSNA make no representations or warranties about the suitability of this information
for use for any particular purpose. All information is provided "as is" without express or implied warranty.

Please visit the RadiologyInfo Web site at http://www.radiologyinfo.org to view or download the latest
information.

Note: Images may be shown for illustrative purposes. Do not attempt to draw conclusions or make diagnoses by
comparing these images to other medical images, particularly your own. Only qualified physicians should interpret
images; the radiologist is the physician expert trained in medical imaging.

Copyright

This material is copyrighted by either the Radiological Society of North America (RSNA), 820 Jorie Boulevard, Oak
Brook, IL 60523-2251 or the American College of Radiology (ACR), 1891 Preston White Drive, Reston, VA
20191-4397. Commercial reproduction or multiple distribution by any traditional or electronically based
reproduction/publication method is prohibited.

Copyright © 2017 Radiological Society of North America, Inc.