RadiologyInfo.org - For Patients

Ultrasound - Scrotum

Ultrasound imaging of the scrotum uses sound waves to produce pictures of a male's testicles and surrounding tissues. It is the primary method used to help evaluate disorders of the testicles, epididymis (tubes immediately next to the testicles that collect sperm) and scrotum. Ultrasound is safe, noninvasive, and does not use ionizing radiation.

This procedure requires little to no special preparation. Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown.

What is Ultrasound Imaging of the Scrotum?

Ultrasound imaging of the scrotum provides pictures of a male's testicles and the surrounding tissues.

Ultrasound is safe and painless. It produces pictures of the inside of the body using sound waves. Ultrasound imaging is also called ultrasound scanning or sonography. It uses a small probe called a transducer and gel placed directly on the skin. High-frequency sound waves travel from the probe through the gel into the body. The probe collects the sounds that bounce back. A computer uses those sound waves to create an image. Ultrasound exams do not use radiation (as used in x-rays). Because images are captured in real-time, they can show the structure and movement of the body's internal organs. They can also show blood flowing through blood vessels.

Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions.

What are some common uses of the procedure?

Ultrasound imaging of the scrotum is the primary imaging method used to evaluate disorders of the testicles, epididymis (tubes immediately next to the testicles that collect sperm made by the testicle) and scrotum.

This study is typically used to:

  • determine whether a mass in the scrotum felt by the patient or doctor is cystic or solid and its location.
  • diagnose results of trauma to the scrotal area.
  • diagnose causes of testicular pain or swelling such as inflammation or torsion.
  • evaluate the cause of infertility such as varicocele.
  • look for the location of undescended testis.

A sudden onset of pain in the scrotum should be taken very seriously. A common cause of scrotal pain is epididymitis, an inflammation of the epididymis. It is treatable with antibiotics. If left untreated, this condition can lead to an abscess or loss of blood flow to the testicles.

Ultrasound can often detect an absent or undescended testicle as well. It is estimated that approximately three percent of full-term baby boys have an undescended testicle. The testicle normally migrates from the abdomen down a short passage called the inguinal canal and then into the usual position in the scrotal sac before birth. If not present in the scrotal sac, the testicle may have stopped in the inguinal region, in which case the ultrasound examination will often see it. If the testicle has not left the abdominal cavity, it may not be seen by sonography. If a testicle is not detected, a urologist may be consulted in order to decide whether additional imaging such as an MRI is needed to determine its location. If the testicle is found to be in the inguinal region, it may be moved into the scrotum. If left in the abdomen too long, the testicle may become cancerous and may need to be removed.

Ultrasound can identify testicular torsion, the twisting of the spermatic cord that contains the vessels that supply blood to the testicle. Testicular torsion is caused by abnormally loose attachments of tissues that are formed during fetal development. Torsion commonly appears during adolescence, and less often in the neonatal period, and is very painful. Torsion requires immediate surgery to avoid permanent damage to the testicle.

Ultrasound also can be used to locate and evaluate masses (lumps or tumors) in the testicle or elsewhere in the scrotum. Collections of fluid and abnormalities of the blood vessels may appear as masses and can be assessed by ultrasound. Masses both outside and within the testicles may be benign or malignant and should be evaluated as soon as they are detected.

How should I prepare?

Wear comfortable, loose-fitting clothing. You may need to remove all clothing and jewelry in the area to be examined.

You may be asked to wear a gown during the procedure.

No other preparation is required.

If your son is undergoing the examination, explain the procedure to him. In most cases, you will be able to accompany him into the examination room for support and reassurance.

What does the equipment look like?

Ultrasound scanners consist of a computer console, video display screen and an attached transducer. The transducer is a small hand-held device that resembles a microphone. Some exams may use different transducers (with different capabilities) during a single exam. The transducer sends out inaudible, high-frequency sound waves into the body and then listens for the returning echoes. The principles are similar to sonar used by boats and submarines.

The technologist applies a small amount of gel to the area under examination and places the transducer there. The gel allows sound waves to travel back and forth between the transducer and the area under examination. The ultrasound image is immediately visible on a video display screen that looks like a computer monitor. The computer creates the image based on the loudness (amplitude), pitch (frequency) and time it takes for the ultrasound signal to return to the transducer. It also takes into account what type of body structure and/or tissue the sound is traveling through.

In order to perform a scrotal sonogram, most commonly a linear small parts transducer is used.

How does the procedure work?

Ultrasound imaging is based on the same principles involved in the sonar used by bats, ships and fishermen. When a sound wave strikes an object, it bounces back, or echoes. By measuring these echo waves, it is possible to determine how far away the object is as well as the object's size, shape and consistency. This includes whether the object is solid or filled with fluid.

In medicine, ultrasound is used to detect changes in the appearance of organs, tissues, and vessels and to detect abnormal masses, such as tumors.

In an ultrasound exam, a transducer both sends the sound waves and records the echoing waves. When the transducer is pressed against the skin, it sends small pulses of inaudible, high-frequency sound waves into the body. As the sound waves bounce off internal organs, fluids and tissues, the sensitive receiver in the transducer records tiny changes in the sound's pitch and direction. These signature waves are instantly measured and displayed by a computer, which in turn creates a real-time picture on the monitor. One or more frames of the moving pictures are typically captured as still images. Short video loops of the images may also be saved.

How is the procedure performed?

For most ultrasound exams, you will lie face-up on an exam table that can be tilted or moved. Patients may be turned to either side to improve the quality of the images.

After you are positioned on the examination table, the radiologist (a physician specifically trained to supervise and interpret radiology examinations) or sonographer will apply a warm water-based gel to the area of the body being studied. The gel will help the transducer make secure contact with the body and eliminate air pockets between the transducer and the skin that can block the sound waves from passing into your body. The transducer is placed on the body and moved back and forth over the area of interest until the desired images are captured.

There is usually no discomfort from pressure as the transducer is pressed against the area being examined. However, if scanning is performed over an area of tenderness, you may feel pressure or minor pain from the transducer.

Once the imaging is complete, the clear ultrasound gel will be wiped off your skin. Any portions that are not wiped off will dry quickly. The ultrasound gel does not usually stain or discolor clothing.

What will I experience during and after the procedure?

Most ultrasound exams are painless, fast and easily tolerated.

Ultrasound imaging of the scrotum is usually completed within 15 to 30 minutes, though sometimes more time is necessary.

If you are accompanying your son during the procedure, ask him to lie still so the sound waves can produce the proper images.

Babies undergoing the examination might cry, but this should not interfere with the procedure.

When the exam is complete, you may be asked to dress and wait while the ultrasound images are reviewed.

After an ultrasound examination, you should be able to resume your normal activities immediately.

Who interprets the results and how do I get them?

A radiologist, a doctor trained to supervise and interpret radiology exams, will analyze the images. The radiologist will send a signed report to the doctor who requested the exam. Your doctor will then share the results with you. In some cases, the radiologist may discuss results with you after the exam.

Follow-up exams may be needed. If so, your doctor will explain why. Sometimes a follow-up exam is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. A follow-up exam may also be done to see if there has been any change in an abnormality over time. Follow-up exams are sometimes the best way to see if treatment is working or if an abnormality is stable or has changed.

What are the benefits vs. risks?

Benefits

  • Most ultrasound scanning is noninvasive (no needles or injections).
  • Occasionally, an ultrasound exam may be temporarily uncomfortable, but it should not be painful.
  • Ultrasound is widely available, easy-to-use and less expensive than most other imaging methods.
  • Ultrasound imaging is extremely safe and does not use radiation.
  • Ultrasound scanning gives a clear picture of soft tissues that do not show up well on x-ray images.
  • Ultrasound provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as needle biopsies and fluid aspiration.

Risks

What are the limitations of Scrotal Ultrasound Imaging?

Ultrasound of the scrotum is helpful for finding abnormalities such as masses in the scrotum or testicles. However, it does not always permit an exact diagnosis (i.e., the exact type of tissue a mass is composed of, especially when the mass is solid). Blood flow images of the testicles are not always reliable in determining the presence or absence of blood supply to a testicle that has twisted. When searching for an absent testicle, ultrasound may not be able to find it if it is located in the abdomen because gas filled bowel loops may block the view.

This page was reviewed on July 01, 2019

Images

View full size with caption

Pediatric Content

Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content.

Sponsored by

Please note

RadiologyInfo.org is not a medical facility. Please contact your physician with specific medical questions or for a referral to a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you can search the ACR-accredited facilities database.

This website does not provide cost information. The costs for specific medical imaging tests, treatments and procedures may vary by geographic region. Discuss the fees associated with your prescribed procedure with your doctor, the medical facility staff and/or your insurance provider to get a better understanding of the possible charges you will incur.

Web page review process: This Web page is reviewed regularly by a physician with expertise in the medical area presented and is further reviewed by committees from the Radiological Society of North America (RSNA) and the American College of Radiology (ACR), comprising physicians with expertise in several radiologic areas.

Outside links: For the convenience of our users, RadiologyInfo.org provides links to relevant websites. RadiologyInfo.org, RSNA and ACR are not responsible for the content contained on the web pages found at these links.