RadiologyInfo.org - For Patients

Ultrasound - Vascular

Vascular ultrasound uses sound waves to evaluate the body's circulatory system and help identify blockages in the arteries and veins and detect blood clots. A Doppler ultrasound study – a technique that evaluates blood flow through a blood vessel – is usually part of this exam. Ultrasound does not use ionizing radiation, has no known harmful effects, and provides images of soft tissues that don't show up on x-ray images.

Little or no special preparation is required for this procedure. However, you may occasionally be asked to fast beforehand. Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown.

What is Vascular Ultrasound?

Ultrasound is safe and painless. It produces pictures of the inside of the body using sound waves. Ultrasound imaging is also called ultrasound scanning or sonography. It uses a small probe called a transducer and gel placed directly on the skin. High-frequency sound waves travel from the probe through the gel into the body. The probe collects the sounds that bounce back. A computer uses those sound waves to create an image. Ultrasound exams do not use radiation (as used in x-rays). Because images are captured in real-time, they can show the structure and movement of the body's internal organs. They can also show blood flowing through blood vessels.

Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions.

Vascular ultrasound provides pictures of the body's veins and arteries.

A Doppler ultrasound study is usually part of a vascular ultrasound examination.

Doppler ultrasound is a special ultrasound technique that evaluates movement of materials in the body. It allows the doctor to see and evaluate blood flow through arteries and veins in the body.

What are some common uses of the procedure?

Sonography is a useful way of evaluating the body's circulatory system. Vascular ultrasound is performed to:

  • help monitor the blood flow to organs and tissues throughout the body.
  • locate and identify blockages (stenosis) and abnormalities like plaque or emboli and help plan for their effective treatment.
  • detect blood clots (deep venous thrombosis (DVT) in the major veins of the legs or arms.
  • determine whether a patient is a good candidate for a procedure such as angioplasty.
  • evaluate the success of procedures that graft or bypass blood vessels.
  • determine if there is an enlarged artery (aneurysm).
  • evaluate varicose veins.

In children, ultrasound is used to:

  • aid in the placement of a needle or catheter into a vein or artery to help avoid complications such as bleeding, nerve injury or pseudo-aneurysm (abnormal outpouching of an artery with the risk of rupture).
  • evaluate a connection between an artery and a vein which can be seen in congenital vascular malformations (arteriovenous malformations or fistula) and in dialysis fistula.

If a line is placed in an artery or vein of the legs or arms, there is a much higher chance of developing a clot around it due to the smaller vessel size (especially in infants and young children). In some instances, a clot can form in the arm or in the left leg with the latter extending into the major vein of the abdomen. Plaque formation is not frequently seen in children but there can be compression at the inlet of the chest.

Doppler ultrasound images can help the physician to see and evaluate:

  • blockages to blood flow (such as clots)
  • narrowing of vessels
  • tumors and congenital vascular malformations
  • reduced or absent blood flow to various organs, such as the testes or ovary
  • increased blood flow, which may be a sign of infection

How should I prepare?

Wear comfortable, loose-fitting clothing. You may need to remove all clothing and jewelry in the area to be examined.

You may be asked to wear a gown during the procedure.

If your abdominal vessels are being examined, unless the examination is performed on an urgent basis, it is best to fast before the procedure.

Ultrasound examinations are very sensitive to motion, and an active or crying child can prolong the examination process. To ensure a smooth experience, it often helps to explain the procedure to the child prior to the exam. Bringing books, small toys, music or games can help to distract the child and make the time pass quickly. The ultrasound exam room may have a television. Feel free to ask for your child's favorite channel.

What does the equipment look like?

Ultrasound scanners consist of a computer console, video display screen and an attached transducer. The transducer is a small hand-held device that resembles a microphone. Some exams may use different transducers (with different capabilities) during a single exam. The transducer sends out inaudible, high-frequency sound waves into the body and then listens for the returning echoes. The principles are similar to sonar used by boats and submarines.

The technologist applies a small amount of gel to the area under examination and places the transducer there. The gel allows sound waves to travel back and forth between the transducer and the area under examination. The ultrasound image is immediately visible on a video display screen that looks like a computer monitor. The computer creates the image based on the loudness (amplitude), pitch (frequency) and time it takes for the ultrasound signal to return to the transducer. It also takes into account what type of body structure and/or tissue the sound is traveling through.

How does the procedure work?

Ultrasound imaging is based on the same principles involved in the sonar used by bats, ships and fishermen. When a sound wave strikes an object, it bounces back, or echoes. By measuring these echo waves, it is possible to determine how far away the object is as well as the object's size, shape and consistency. This includes whether the object is solid or filled with fluid.

In medicine, ultrasound is used to detect changes in the appearance of organs, tissues, and vessels and to detect abnormal masses, such as tumors.

In an ultrasound exam, a transducer both sends the sound waves and records the echoing waves. When the transducer is pressed against the skin, it sends small pulses of inaudible, high-frequency sound waves into the body. As the sound waves bounce off internal organs, fluids and tissues, the sensitive receiver in the transducer records tiny changes in the sound's pitch and direction. These signature waves are instantly measured and displayed by a computer, which in turn creates a real-time picture on the monitor. One or more frames of the moving pictures are typically captured as still images. Short video loops of the images may also be saved.

Doppler ultrasound, a special ultrasound technique, measures the direction and speed of blood cells as they move through vessels. The movement of blood cells causes a change in pitch of the reflected sound waves (called the Doppler effect). A computer collects and processes the sounds and creates graphs or color pictures that represent the flow of blood through the blood vessels.

How is the procedure performed?

For most ultrasound exams, you will lie face-up on an exam table that can be tilted or moved. Patients may be turned to either side to improve the quality of the images.

A clear water-based gel is applied to the area of the body being studied. This helps the transducer make secure contact with the body and eliminate air pockets between the transducer and the skin that can block the sound waves from passing into your body. The technologist or radiologist places the transducer on the skin in various locations, sweeping over the area of interest. The sound beam may also be angled from a different location to better see an area of concern.

Doppler sonography is performed using the same transducer.

When the exam is complete, you may be asked to dress and wait while the ultrasound images are reviewed.

This ultrasound examination is usually completed within 30 to 45 minutes. Occasionally, complex examinations may take longer.

What will I experience during and after the procedure?

Most ultrasound exams are painless, fast and easily tolerated.

After you are positioned on the examination table, the radiologist or sonographer will apply some warm water-based gel on your skin and then place the transducer firmly against your body, moving it back and forth over the area of interest until the desired images are captured. There is usually no discomfort from pressure as the transducer is pressed against the area being examined.

If scanning is performed over an area of tenderness, you may feel pressure or minor pain from the transducer.

If a Doppler ultrasound study is performed, you may actually hear pulse-like sounds that change in pitch as the blood flow is monitored and measured.

Once the imaging is complete, the clear ultrasound gel will be wiped off your skin. Any portions that are not wiped off will dry quickly. The ultrasound gel does not usually stain or discolor clothing.

After an ultrasound examination, you should be able to resume your normal activities immediately.

Who interprets the results and how do I get them?

A radiologist, a doctor trained to supervise and interpret radiology exams, will analyze the images. The radiologist will send a signed report to the doctor who requested the exam. Your doctor will then share the results with you. In some cases, the radiologist may discuss results with you after the exam.

Follow-up exams may be needed. If so, your doctor will explain why. Sometimes a follow-up exam is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. A follow-up exam may also be done to see if there has been any change in an abnormality over time. Follow-up exams are sometimes the best way to see if treatment is working or if an abnormality is stable or has changed.

What are the benefits vs. risks?

Benefits

  • Most ultrasound scanning is noninvasive (no needles or injections).
  • Occasionally, an ultrasound exam may be temporarily uncomfortable, but it should not be painful.
  • Ultrasound is widely available, easy-to-use and less expensive than most other imaging methods.
  • Ultrasound imaging is extremely safe and does not use radiation.
  • Ultrasound scanning gives a clear picture of soft tissues that do not show up well on x-ray images.

Risks

What are the limitations of Vascular Ultrasound?

  • Vessels deep in the body are harder to see than superficial vessels. Specialized equipment or other tests such as CT or MRI may be necessary to properly visualize them.
  • Smaller vessels are more difficult to image and evaluate than larger vessels.
  • Calcifications that occur as a result of atherosclerosis may obstruct the ultrasound beam.
  • The test is specialized and is best performed by a technologist and physician with experience in vascular ultrasound imaging.

Additional Information and Resources

American Stroke Association

National Stroke Association

This page was reviewed on February 05, 2019

Images

Photograph of a radiologist performing an ultrasound exam. View full size with caption

Pediatric Content

Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content.

Sponsored by

Please note

RadiologyInfo.org is not a medical facility. Please contact your physician with specific medical questions or for a referral to a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you can search the ACR-accredited facilities database.

This website does not provide cost information. The costs for specific medical imaging tests, treatments and procedures may vary by geographic region. Discuss the fees associated with your prescribed procedure with your doctor, the medical facility staff and/or your insurance provider to get a better understanding of the possible charges you will incur.

Web page review process: This Web page is reviewed regularly by a physician with expertise in the medical area presented and is further reviewed by committees from the Radiological Society of North America (RSNA) and the American College of Radiology (ACR), comprising physicians with expertise in several radiologic areas.

Outside links: For the convenience of our users, RadiologyInfo.org provides links to relevant websites. RadiologyInfo.org, RSNA and ACR are not responsible for the content contained on the web pages found at these links.